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a b s t r a c t

This study shows how applying compressed sensing (CS) to 19F chemical shift imaging (CSI) makes highly
accurate and reproducible reconstructions from undersampled datasets possible. The missing back-
ground signal in 19F CSI provides the required sparsity needed for application of CS.

Simulations were performed to test the influence of different CS-related parameters on reconstruction
quality. To test the proposed method on a realistic signal distribution, the simulation results were vali-
dated by ex vivo experiments. Additionally, undersampled in vivo 3D CSI mouse datasets were success-
fully reconstructed using CS.

The study results suggest that CS can be used to accurately and reproducibly reconstruct undersampled
19F spectroscopic datasets. Thus, the scanning time of in vivo 19F CSI experiments can be significantly
reduced while preserving the ability to distinguish between different 19F markers. The gain in scan time
provides high flexibility in adjusting measurement parameters. These features make this technique a use-
ful tool for multiple biological and medical applications.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The MR community has regained interest in 19F MRI during the
last few years. The low natural abundance of 19F in living tissue
leads to a negligible 19F background signal [1]. This allows for
unambiguous detection of many exogenously administered 19F
markers exhibiting unique spectral signals. These advantages,
along with its gyromagnetic ratio comparable to 1H, make fluorine
a suitable marker for molecular imaging [2], cell tracking [1,3], and
other biological and medical applications [4–6]. The identification
of different 19F markers can be achieved using chemical shift imag-
ing (CSI) [2,7,8].

Certain limitations, however, must be considered if 19F CSI is
used. In some applications, 19F imaging suffers from a low concen-
tration of markers at the region of interest, resulting in a low sig-
nal-to-noise ratio (SNR). Furthermore, spectral information
acquired in an acceptable in vivo measurement time comes at the
expense of spectral or spatial resolution. Additionally, when the
spatial distribution of markers is unknown, such as with 19F track-
ing of labeled cells, 3D imaging is preferable. Moreover, the combi-
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nation of spectroscopic and 3D imaging can lead to unacceptably
long measurement times for in vivo experiments. Therefore, strat-
egies to accelerate 3D 19F CSI experiments are of special interest
and have been proposed. These include echo-shifting methods
[9], wavelet encoding [10], and Non-Cartesian trajectories [11]. A
novel strategy to accelerate spectroscopic experiments is com-
pressed sensing (CS).

CS was recently introduced as a novel technique for recon-
structing undersampled sparse datasets [12,13]. A sparse dataset
occurs when the number of non-zero elements is significantly
smaller than the number of all elements in a given dataset. Since
ideally the background intensity is zero and only the blood vessels
contain signal, contrast-enhanced angiography is a common exam-
ple of sparse data in the context of MRI. According to the CS theory
[12,13], it is possible in the noise-free case to exactly reconstruct
images from fewer k-space points than required by the Nyquist
theorem. Thus, data acquisition can be accelerated. First applica-
tions to MR imaging were demonstrated shortly after the introduc-
tion of CS [14–17]. A detailed description of CS with MRI was also
recently published [18].

The possible reduction in scan time using CS with spectroscopic
imaging has been investigated in hyperpolarized 13C CSI experi-
ments [19–21]. In these papers, the sparsity in the spectral dimen-
sion was exploited using an echo-planar flyback method. The
current study investigates the potential of CS using fully phase-
encoded 19F CSI. Because its signal distribution is often spatially
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sparse, 19F is a nucleus well-suited for CS. While preliminary work
demonstrated the applicability of CS for accurate reconstruction of
undersampled 2D 19F CSI datasets [22], this study extends the idea
to 3D 19F CSI.

Since 19F images suffer from low SNR in some applications, the
noise level and its effect on reconstruction quality were of special
focus in this work. To address this issue, simulations were per-
formed with various combinations of noise levels and reconstruc-
tion parameters. The simulation results were confirmed by a real
19F signal distribution that was obtained from a 7T ex vivo mouse
dataset. To validate the proposed method in vivo, undersampled
and fully sampled datasets of a photothrombotic (PT) mouse model
were acquired at 7T. The undersampled in vivo data were recon-
structed using optimized parameters obtained from the results of
the simulations and ex vivo experiments.

Thus, CS was successfully applied to 19F 3D CSI. The results sug-
gest that CS enables significantly reduced measurement times and
a higher flexibility in the data acquisition process.
2. Methods

2.1. Compressed sensing

CS is a sophisticated technique used to precisely reconstruct
undersampled sparse datasets. A detailed discussion on CS has
been previously published and the reader is therefore referred to
these papers [12,13,18]. Thus, only a short summary is provided
of the most important properties of CS relevant to this work.

The CS method requires the consideration of three essential
factors:

(1) A sparse representation of the desired signal is crucial for the
success of the CS method. A signal is sparse if a domain
exists where the dataset is fully characterized by a number
of specific elements significantly lower than the number of
all elements in the dataset. The sparser the description of
the desired signal in any arbitrary mathematical basis, the
less data are necessary for an accurate reconstruction.

(2) A sampling strategy that creates incoherent artifacts is nec-
essary when undersampling. For example, regularly under-
sampled data found in Cartesian parallel imaging [23,24]
creates coherent foldover artifacts that cannot be handled
using CS. This is because CS cannot distinguish between a
coherent foldover artifact and the desired unfolded signal.

(3) An accurate reconstruction scheme must be found to
‘‘decompress” the ‘‘compressed” signal.

These three major aspects are explained in greater detail below.
CS reconstructs undersampled sparse signals by minimizing a

cost function that formulates the reconstruction problem. It is
important to note that sparse signals only exist in a noise-free setup
as pointed out by Candès and Donoho [12,13]. In the presence of
noise, all elements have non-vanishing intensities. Sparsity, how-
ever, can be approximately defined when the background noise is
significantly lower than the intensity of signal containing elements.
Thus, it could be stated that a signal is sparse when the number of
signal elements (i.e., elements with significantly higher intensity
than the background noise) is small compared to the number of
all the elements in a dataset. Sparsity, therefore, is always influ-
enced by the SNR. The higher the SNR, the better the noise-free case
is approximated. Furthermore, sparsity can also be influenced by a
sparsifying transform (e.g., wavelet transform). This does not neces-
sarily lead to exact sparsity, even in the noise-free case; however,
the dominating transform coefficients can be sufficient to accu-
rately represent the transformed data. Therefore, coefficients below
a certain threshold are discarded and, depending on the threshold,
often only an approximate sparsity can be defined. In the context of
this work, the sparse domain is considered the image space since
only regions containing 19F markers provide signal. Thus, no trans-
formations or any other data preparation steps were applied prior
to CS reconstruction. Therefore, the sparsity of the presented data
is not influenced by sparsifying transforms.

This work focuses on fully phase-encoded 3D CSI, which enables
a pseudo-random 3D sampling scheme. This scheme was chosen
for all undersampled experiments in this study. Such a pattern
has been previously shown to be well-suited for CS [18,22,25]
due to the incoherent artifacts introduced in cases of undersam-
pling. To provide a good initial guess for, and thus accelerate the
convergence of the CS algorithm, a low resolution image of the ob-
ject was obtained by densely sampling the k-space center.

The CS theory states that the missing k-space points in an
undersampled 3D (i.e., three spatial dimensions) dataset can be
recovered using an algorithm that solves the reconstruction
problem:

minkxkp ð1Þ

such that strict data consistency holds. In Eq. (1), x refers to the im-
age pixels stacked into a vector. The ||�||p-norm (p 2 R) is defined as:

kmkp ¼
X

i
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where m is an arbitrary vector with elements mi 2 C. The norm is
‘‘nonconvex” if p < 1, otherwise it is referred to as ‘‘convex.” With
noise-free data, a nonconvex norm p < 1 theoretically leads with
overwhelming probability to exact reconstructions with even fewer
sampled k-space points than the convex case p = 1.00 [26].

Eq. (1) models a dataset that is sparse in the image domain.
According to this model, the expected image consists of a few pix-
els with different amplitudes. The minimization starts from an
undersampled, artifact-corrupted initial guess (inverse Fourier
transform of undersampled k-space data). Solving Eq. (1) mini-
mizes the number and amplitude of the non-zero pixels in the im-
age while preserving strict data consistency. The minimization of
Eq. (1) was achieved using a steepest descent algorithm recently
proposed by Chartrand [26] and reviewed in Appendix A. All recon-
struction parameters relevant to this work can be found in the
appendix.

The algorithm was chosen because it does not require the deter-
mination of regularization parameters as in other studies [18,27].
This is due to a strict data consistency constraint requiring the
insertion of measured k-space data points into the CS recon-
structed k-space after each iteration step.

2.2. Simulations and experiments

The following experiments investigated the quality of CS recon-
structed spatially sparse 3D data. First, simulations were per-
formed on a numerical 3D phantom to determine the influence
of noise, acceleration factor, and norm on reconstruction quality.
Second, a measured ex vivo dataset was retrospectively undersam-
pled and reconstructed to verify the simulation results. Two 19F
markers with different chemical shifts were used in these ex vivo
experiments to investigate whether or not CS reconstruction pre-
serves the ability of CSI to distinguish between these markers.
Third, optimized parameters were derived from these simulations
and experiments and used to reconstruct undersampled in vivo
photothrombotic (PT) mouse datasets. In contrast to the ex vivo
experiments, only one marker was applied.

It is important to note that a complete spectrum was acquired
for each sampled k-space point in the ex and in vivo experiments.



264 T. Kampf et al. / Journal of Magnetic Resonance 207 (2010) 262–273
Therefore, no CS reconstruction exploiting spectral sparsity was
performed.

To acquire and reconstruct undersampled data from the in vivo
measurements, a sampling pattern was defined, the image param-
eters were set, and a gradient list for the phase-encoding steps was
subsequently calculated in MATLAB (The MathWorks Inc., Natick,
USA). With the help of this list, the undersampled k-space data
were acquired. These data were then reconstructed using the CS
algorithm described above.

The acceleration factor used in this work was defined as the ra-
tio of all data points required for full Fourier encoding relative to
the acquired data points. Thus, the acceleration factor was equiva-
lent to the reduction factor regarding scan time.

2.2.1. Phantom simulations
Simulations were performed to study the behavior of the uti-

lized CS technique. Specifically, the dependence of the algorithm
on the noise level, value of the norm, and different acceleration fac-
tors were investigated. These simulations aimed at optimizing the
reconstruction parameters for later experimental realization.
Therefore, a numerical mouse phantom was created using MAT-
LAB. The phantom dimensions were 90 � 90 � 180 spatial points
with a spatial sparsity of 6% (i.e. 6% of all pixels were non-zero).
Spectral information was not simulated since different spectral
points on one particular resonance line differ primarily in SNR.
Thus, the spectral points on the slopes of the resonance line offer
lower SNR than the peak. Therefore, simulating different noise lev-
els is equivalent to examining different spectral points.

The phantom provided signal from various simulated structures
known to accumulate 19F markers such as the liver, spleen, and
bone marrow [28]. Additionally, signal reflecting stroke structures
in the brain were integrated to match ex and in vivo PT mouse
models. The maximum signal intensity was normalized to 1. To mi-
mic the biological situation, the signal level variations of the differ-
ent structures throughout the phantom covered a range of several
magnitudes. For example, the simplified liver exhibited approxi-
mately 20 times more signal than the stroke structures in the
brain. This was in accordance with the ex vivo measurements in
this study. Pseudo-random Gaussian white noise was separately
added to the real and imaginary parts of the dataset. The standard
deviation of the Gaussian noise distribution was set to r = {0;
0.0001; 0.0005; 0.001; 0.0025; 0.005; 0.01}. Furthermore, the value
of the norm was varied by p = {0.25, 0.50, 0.75, 0.90, 1.00}. The
norm p = 1.00 is the so-called ‘‘limiting convex case,” which is often
used in CS reconstructions [18,27]. It has been shown that solving
the minimization problem with p = 1.00 leads, in most cases, to the
sparsest solution [29]. Therefore, p > 1 was not further investi-
gated. The acceleration factor was the third parameter studied.
The following undersampling values were investigated: 2, 4, 6, 8,
10, 12. The sampling pattern consisted of a densely sampled k-
space center (7 � 7 � 11 cuboid accounting for 0.04% of the total
k-space) and a randomly undersampled outer k-space.

The reconstruction quality of the results was quantified using
the root mean square error (RMSE) metric, defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðRi � OiÞ2P

i
O2

i
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where Ri represents the ith voxel in the reconstructed 3D phantom
and Oi represents the ith voxel in the noise-free reference phantom.

2.2.2. Ex vivo experiments
The ex vivo experiments were performed to verify the simula-

tion results with a real 19F signal distribution. Two 19F markers
with different chemical shifts were used to examine whether or
not CS reconstruction preserves the ability of CSI to distinguish be-
tween these markers.

Animal preparation. Animal experiments were performed in
accordance with institutional guidelines and approved by Bavarian
state authorities. As previously described [30], focal cerebral ische-
mia was induced in one adult C57/BL6-mouse by PT of cortical
microvessels. During the procedure, the mouse was under inhala-
tion anesthesia with enflurane in a 2:1 nitrogen/oxygen atmo-
sphere. A cold light source was stereotactically centered on the
intact skull 2 mm posterior and 2.4 mm right from the Bregma.
After intraperitoneal administration of sterile-filtered Rose Bengal
solution (0.2 ml), the brain was illuminated for 20 min. Immedi-
ately after illumination, 250 ll of an emulsion containing 30% v/v
perfluoro-15-crown-5-ether (VS580H, Celsense, Inc., Pittsburgh,
PA, USA) was intravenously applied. The skin was afterwards su-
tured and the mouse allowed to recover. The same procedure
was repeated on the left hemisphere eight days later, leading to
a second cortical infarction. Immediately following illumination,
250 ll of a second emulsion containing 30% v/v perfluoro-poly-
ethelene-oxide (VS1000H, Celsense, Inc., Pittsburgh, PA, USA) was
intravenously applied.

The mouse was sacrificed by CO2 narcosis and fixed in 4% para-
formaldehyde 14 days after induction of the first PT. The fixed ani-
mal served as a model for the ex vivo experiments.

Regarding the emulsions, the PFC core compound of the VS580H
emulsion is single resonant and the PFC core compound of the
VS1000H emulsion can also be considered single resonant. Due
to the chemical shift, the separation of both PFC resonances is
approximately 0.8 ppm, which corresponds to approximately
230 Hz at 7T.

Magnetic resonance imaging. The MR measurements were per-
formed on a 7T Bruker Biospec system (Bruker BioSpin GmbH,
Rheinstetten, Germany) using a home-built surface coil with an in-
ner diameter of 20 mm. The coil was adjustable to both the 1H res-
onance frequency of 300.3 MHz and the 19F resonance frequency of
282.4 MHz.

For use as an anatomical reference, an axial 3D 1H turbo spin
echo (TSE) scan of the animal’s head was performed (TEeff/TR:
53.6 ms/1000 ms; inter-echo time: 6.7 ms; turbo factor: 16; FOV:
30 mm � 40 mm � 30 mm; matrix: 150 � 200 � 60; NA: 1). After
1H imaging, the coil was set to the 19F frequency. The same geometry
was used for both the 1H image and the fully phase-encoded 3D 19F
steady-state free precession CSI (SSFP-CSI) [31] experiments (pulse
shape: hermite; pulse bandwidth: 5400 Hz; TACQ/TR: 10.7 ms/
14 ms; spectral points: 128; FOV: 30 mm � 40 mm � 30 mm;
matrix: 74 � 100 � 60).

The frequency of the non-selective pulse was centered between
the resonance frequencies of both administered PFC emulsions.
The resonance frequencies were derived from a non-spatially re-
solved spectrum.

Five fully sampled 19F datasets were obtained and each experi-
ment lasted 1 h 45 min. Thus, the total measurement time was 8 h
45 min. To improve the point spread function (PSF), each dataset
was retrospectively weighted based on a modified Bartlett–Hanning
window provided in MATLAB. A five times averaged dataset was
created and retrospectively undersampled with an acceleration fac-
tor of 8. Additionally, one of the fully sampled datasets was under-
sampled by an acceleration factor of 8/5 and reconstructed using
the same parameters previously described. Moreover, a zero-filled
low resolved dataset from 5/8 of the total k-space was generated.
This allowed comparison of opposite sampling strategies with the
same reduced measurement time. In the same context, a single aver-
aged dataset was CS reconstructed from af = 8 (p = 0.75) and
compared to a zero-filled low resolved dataset from 1/8 of the total
k-space data. An overview of the different investigated combina-
tions of averaging and undersampling is given in Table 1.



Table 1
Overview of the different investigated combinations of averaging and undersampling
as utilized in the retrospectively undersampled ex vivo experiments.

Reconstruction method CS CS Zero-filled CS Zero-filled

af 8 8/5 8/5 8 8
NA 5 1 1 1 1
Possible measurement

time (min)
65 65 65 13 13

Figures 3, 5, 6 3 3 4 4
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For all CS-reconstructed ex vivo experiments, the densely sam-
pled inner k-space was a cuboid consisting of 7 � 7 � 11 k-space
points. These points accounted for approximately 0.12% of the total
k-space. For these datasets, 30 spectral points covering the 19F sig-
nal peaks were CS reconstructed for different values of p {0.25;
0.50; 0.75; 0.90; 1.00}.
2.2.3. In vivo experiments
Undersampled in vivo mouse datasets were acquired and recon-

structed to demonstrate the in vivo applicability of the proposed
method. For the reconstruction, optimized parameters were derived
from the previously described simulations and ex vivo experiments.

Animal preparation. Animal experimentation was performed in
accordance with institutional guidelines and approved by Bavarian
state authorities. In vivo scanning was performed on one mouse. As
described in the previous section, focal cerebral ischemia by PT
was induced only on the right hemisphere. Immediately after illu-
mination, 500 ll of a customized 10% v/v perfluoro-15-crown-5-
ether emulsion was intravenously applied. The preparation of this
emulsion is described in detail by Floegel et al. [6].

For in vivo scanning, the mouse was anesthetized with 1.5% iso-
flurane in a 2 L/min oxygen atmosphere.
Fig. 1. Results of the simulations. (a) The RMSE for multiple noise levels dependent on th
the minimum RMSE value shifts from p = 0.25 to p = 0.75 for higher noise levels. Furtherm
curve (r = 0). (b) The RMSE for multiple acceleration factors dependent on the norm is sh
scaled differently for the plots and that the displayed noise levels are higher than in (a) by
with increasing noise level. The minimum RMSE value shifts from p = 0.25 to p = 1. To p
levels and acceleration factors are displayed in (a) and (b).
Magnetic resonance imaging. MR measurements were performed
on a 7T Bruker Biospec system using a home-built, double resonant
birdcage coil with an inner diameter of 40 mm [32].

For use as an anatomical reference, an axial 3D 1H turbo spin
echo (TSE) whole body scan was performed (TEeff/TR: 44.8 ms/
1000 ms; inter-echo time: 5.6 ms; turbo factor: 16; FOV:
30 mm � 30 mm � 70 mm; matrix: 192 � 192 � 70; NA: 1). After
1H imaging, the coil was set to the 19F frequency and multiple 3D
19F SSFP-CSI experiments were performed. The same geometry
was used for both the 1H image and the 3D 19F SSFP-CSI experi-
ments (pulse shape: hermite; pulse bandwidth: 5400 Hz; TACQ/
TR: 10.1 ms/13.6 ms; spectral points: 64; matrix: 48 � 48 � 70;
NA: 1). A fully sampled dataset was acquired in a total measure-
ment time of 37 min. Additionally, eight identically undersampled
datasets were acquired in only 4 min 50 s each. All scans had an
approximate acceleration factor of 8. To improve the PSF, all data-
sets were retrospectively weighted based on a modified Bartlett–
Hanning window provided in MATLAB.

The eight identical datasets allowed reconstruction of under-
sampled datasets with 1–8 k-space averages. The densely sampled
central k-space was a 16 � 16 � 22 cuboid, which accounted for
3.50% of the total k-space.

The in vivo mouse datasets were reconstructed at 15 spectral
points covering the 19F signal peak. To show the influence of the
SNR, the eight times accelerated datasets were reconstructed for
p = 0.75 and multiple averaging factors {1,2,4,8}.

3. Results

3.1. Phantom simulations

The effect of different noise levels and acceleration factors on
the reconstruction quality is shown in Fig. 1. To visualize the
e norm is shown for different acceleration factors (af = 4, 8 and 12). Please note that
ore, the curves for r = 0.0001 are positioned almost exactly on top of the noise-free
own for different noise levels (r = 0.001; 0.005; 0.01). Please note that the y-axis is
up to a factor of 100. Additionally, the qualitative appearance of the curves changes
revent the presentation of redundant information, different combinations of noise
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influence of the acceleration factor, the RMSE was plotted against
the reconstruction norm for four noise levels in the subplots of
Fig. 1a. The diagrams are almost identical, indicating that, for the
investigated range of parameters, the acceleration factor had only
a minor influence on the reconstruction quality. This indication is
also seen in Fig. 1b.

The effect of different noise levels on the reconstruction quality
is the focus of the subplots in Fig. 1b. Similar to Fig. 1a, the RMSE is
displayed as dependent on the reconstruction norm. In each sub-
plot, the effect is visualized for three acceleration factor values.
As seen, increasing the noise level led to a shift of the minimum
RMSE from lower (p = 0.25) to higher p values (p = 1.00). This ten-
dency can also be observed in Fig. 1a by comparing the different
noise levels of each subplot.

Fig. 2 shows that a nonconvex norm led to a faster convergence
of the minimization algorithm and a lower remaining background
Fig. 2. (a) A representative slice of the numerical mouse phantom dataset is shown with
on the visual reconstruction quality is displayed for multiple noise levels. As seen, the lim
the increasing background intensity of the CS reconstructions is dependent on the norm a
of the plotted profile shown in (b). For better visibility, the images are scaled by a power o
can be seen that the smaller the norm is, the lower the remaining overall background inte
in the lower row for r = 0.001 and p = 0.25 (e.g., position 21) and for r = 0.01 and p = 0.2
15–55 in the upper row. The SNR of the displayed structure in the lower row is infinity
intensity. This becomes obvious when comparing the convex
(p = 1.00) with the nonconvex (p = 0.25 and 0.75) reconstructions.
For the nonconvex norms, more details were recovered for the gi-
ven number of iterations than for the convex norm. Furthermore,
the background intensity was significantly lower. When moderate
noise was added (Fig. 2, r = 0.001), the results were almost identi-
cal to the noise-free case.

It is important to remember the influence of the noise level on
CS reconstructions. Low signal components can no longer be recov-
ered when the overall noise level is high (e.g., r = 0.01). Addition-
ally, spike artifacts occur dependent on the norm and the noise
level (Fig. 2a). A smaller norm will lead to more pronounced spike
artifacts. This can, especially in the case of high noise levels, signif-
icantly corrupt the reconstruction quality.

In Fig. 2b, a close-up of a 1D profile of the numerical mouse
phantom is displayed. For noise-free data, only the two nonconvex
results for an exemplary acceleration factor of 10. The influence of the chosen norm
iting convex case p = 1 fails to recover some of the fine structures. Please note that

nd the noise level. The yellow line in the r = 0 reference image indicates the position
f 0.4. (b) A single 1D profile from the numerical mouse phantom dataset is shown. It

nsity. Spike artifacts, however, occur with increasing noise. These can be clearly seen
5 (e.g., position 29). Please note that the lower row is a magnified view of positions
(r = 0), 24 (r = 0.001) and 2.4 (r = 0.01). The plots are scaled by a power of 0.4.
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reconstructions (p = 0.25 and 0.75) were able to adequately recover
the profile. Furthermore, the nonconvex norms provided a lower
overall background intensity for the same number of iterations
than the limiting convex p = 1.00. This held for noise-levels varying
over several orders of magnitude as seen in the two profiles with
r = 0.001 and 0.01. The magnified details (Fig. 2b, lower row) of
positions 15–55 in the three corresponding profile plots (Fig. 2b,
upper row) show that the displayed low intensity structures could
not be recovered from noise-free and low-noise datasets using
p = 1.00. For high noise levels (e.g., r = 0.01), these structures were
below the reference noise level.
Fig. 4. Comparison of a low resolution dataset (1/8 of the whole data and zero-filled
to full matrix size) and a CS reconstruction (p = 0.75; af = 8). The reference dataset
was not averaged. All images show the same exemplary slice. In the upper row, the
quality of the zero-filled dataset is comparable to the reference and the CS
reconstruction. However, in addition to blurring, a ringing artifact is observed in
slice direction (perpendicular to image plane, arrow). In the bottom row, blurring
and ringing artifacts are observed in the zero-filled dataset. Again, the arrows point
to ringing artifacts in slice direction. The CS image, however, offers an accurate
reconstruction exhibiting typical spike artifacts.
3.2. Retrospectively undersampled ex vivo MRI measurements

Fig. 3a displays the 1H reference scan and the fully sampled five
times averaged 19F reference overlay, allowing anatomical correla-
tion. Thus, 19F signal can be observed in the lesion area and supra-
cranially at the site of the skin incision.

Fig. 3b compares a zero-filled dataset from the inner 5/8 of the
single averaged k-space to CS reconstructions of single averaged
data with af = 8/5 and five times averaged data with af = 8. All
images provide the relevant biological information. No significant
difference between the single averaged zero-filled data and the
fully sampled single averaged reference can be seen in the figures.

Differences, however, can be observed between the CS recon-
structions as a result of averaging and different acceleration fac-
tors. These differences become apparent when observing the
reduced background intensity and stronger contrast of the five
times averaged and CS reconstructed dataset. Spike artifacts, how-
ever, appear more pronounced in the five times averaged and CS
reconstructed dataset. Nevertheless, the CS reconstruction of the
single averaged dataset with af = 8/5 shows no significant differ-
ences from the reference and zero-filled images in Fig. 3b.

In order to demonstrate that the proposed method allowed
effective acceleration of a factor of eight, a comparison is shown
in Fig. 4 of a zero-filled low resolved dataset from 1/8 of the
k-space and a CS reconstruction (p = 0.75, af = 8). All data were
Fig. 3. (a) Anatomical reference overlaid with a fully sampled 19F signal of a five tim
supracranially at the site of the skin incision. (b) Comparison of different undersampling
were obtained using p = 0.75. Please note the reduced blurring and artifacts in both CS
obtained from a single averaged dataset. In all images, the same
exemplary slice is displayed at different spectral points. In the
upper row, the slice is shown at the resonance peak of VS1000H.
The zero-filled dataset offers a similar image quality as the refer-
ence dataset and the CS reconstruction. However, the CS recon-
struction exhibits a suppressed background. In the zero-filled
es averaged dataset. 19F signal can be observed in the ring-like lesion area and
schemes leading to the same measurement time of 65 min. Both CS reconstructions
reconstructions compared to the undersampled image.
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image, besides blurring due to the reduced resolution, a ringing
artifact in the slice direction (perpendicular to displayed image
plane, arrow) is observed. At the VS580H peak, more prominent
blurring and ringing artifacts can be observed in the zero-filled im-
age. Furthermore, similar to the VS1000H zero-filled image, a ring-
ing artifact in the slice direction (arrow) is observed. The CS
reconstruction at the VS580H resonance peak shows a highly accu-
rate reconstruction without blurring or ringing artifacts. Spike arti-
facts, however, can be observed.

To illustrate the influence of the norm, CS reconstructions for
different p values of the five times averaged and eight times under-
sampled 3D dataset are displayed in Fig. 5. This figure clearly
shows that all CS reconstructed datasets provided superior image
quality compared to the randomly undersampled dataset. As al-
ready seen in the simulations, all norms showed a similar influence
on reconstruction quality. CS reconstructions with low p values
tended to exhibit more prominent spike artifacts while the quality
of the reconstructed 19F signals remained similar for all norms. All
CS reconstructed images, however, provided at least the same
information content as the single averaged, fully sampled dataset.
Furthermore, the signal components in the CS reconstructions
were better defined. Additionally, Fig. 5 demonstrates that the pro-
posed method is able to reproduce 19F signals correlated to a
photothrombosis stroke from the accelerated data. Thus, in this
case no information relevant to biological/clinical research would
be lost.

Fig. 6 demonstrates that different 19F markers could be distin-
guished in the CS reconstruction. Fig. 6a compares the five times
averaged reference to the eight times undersampled and CS recon-
structed datasets at two different spectral points. These points cor-
respond to the peak intensities of VS1000H and VS580H. In Fig. 6a
and b, no significant deviations between the reference images and
the reconstructions can be observed. Spectra of representative vox-
els from both stroke structures (Fig. 6a, arrows) are shown for the
reference and the CS reconstructions. In addition to the peak inten-
sities, the resonance line shapes of both markers were also suffi-
ciently recovered. As previously mentioned, the spatial data for
each spectral point were independently reconstructed.
Fig. 5. Results of the retrospectively undersampled ex vivo mouse experiments (af = 8). A
values of the norm are compared to a single average and a five times averaged reference
VS1000H signal can be correlated with the infarcted area. Additional 19F signal can be o
3.3. Undersampled in vivo MRI measurements

In Fig. 7a, the fully sampled, single averaged reference is com-
pared to the reconstructions of the undersampled datasets with
different averaging factors. A representative slice in the mouse
brain is shown, exhibiting 19F signal correlated to the area of the
stroke (Fig. 7b). It can be seen that the spike artifacts in the CS
reconstructed images became less pronounced with increased
averaging. Importantly, the stroke-related structure could be
clearly extracted for all averaging factors. Thus, it was possible to
obtain the relevant biological information in less than 5 min
(af = 8). Furthermore, the blurring of the undersampled dataset
was completely eliminated, preserving the spatial resolution of
the fully sampled data. The fully sampled, single average dataset,
however, lasted 37 min.
4. Discussion

This study demonstrated the ability of CS to accurately and
reproducibly reconstruct spatially sparse undersampled 3D 19F
CSI datasets. There were four main findings. First, CS can be used
to shorten the measurement time in the presence of sufficient sig-
nal intensity. Second, the gain in measurement time due to under-
sampling provides more flexibility in 19F MR experiments. Third,
the optimal norm for CS reconstruction depends on the noise level.
A good compromise, however, is p = 0.75 for all investigated noise
levels. Fourth, CS does not affect the ability of CSI to distinguish be-
tween different markers. Thus, the proposed method can be a valu-
able tool for multiple biological and medical applications.
4.1. Flexibility due to undersampling

The ability to undersample spatially sparse spectroscopic 19F
datasets offers new flexibility for experiments. One possibility
is a reduction in measurement time given sufficient signal inten-
sity. Thus, in a fraction of the measurement time needed for a
fully sampled dataset, enough k-space data can be acquired to
representative slice from the brain is shown. Reconstruction results for the different
. All norms recovered the relevant information. The arrow marks the area where the
bserved supracranially at the location of the skin incision.



Fig. 6. Influence of the CS reconstruction on the spectral information. (a) Images of the peak intensities of the resonance lines of VS580H (spectral line 14) and VS1000H
(spectral line 16) are shown. The same slice from the 3D dataset for both resonance lines is shown. The solid arrows point to voxels in a stroke labeled with VS580H and the
dashed arrows point to voxels in a stroke labeled with VS1000H. (b) Comparison of the reference spectrum with the spectrum of the CS reconstructions. The spectra (solid and
dashed) were obtained from areas marked by the corresponding arrows in (a). As can be seen, the essential spectral information is the same for the reference and the CS
reconstructions. Thus, the relevant biological information was preserved in the CS reconstructions. Please keep in mind that each spectral point was independently
reconstructed.

Fig. 7. Results of the undersampled in vivo experiments with an acceleration factor of 8. (a) A representative slice of the data is shown. The benefit of averaging on the visible
CS reconstruction quality is clear. Furthermore, the relevant biological information was recovered for all averaging factors. Thus, this information was acquired in reduced
measurement time (approx. 5 min instead of approx. 37 min) by up to a factor of 8. (b) Overlay of an in vivo 1H mouse reference dataset and the CS reconstruction of an eight
times undersampled, eight times averaged dataset. The peak SNR of the shown biological structure in the single average reference scan was approximately 10.
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reconstruct a full image. If the SNR in a dataset is low, additional
averaging of the undersampled data can be applied to improve
the CS reconstruction quality (Figs. 5 and 7). However, in case
of low SNR, it could be more advantageous to collect additional
data points instead of averaging. Furthermore, CS reconstruction
of undersampled data allows utilizing time-consuming strategies
that would otherwise exceed acceptable in vivo measurement
times. Examples include using a higher spectral resolution, acqui-
sition-weighted imaging requiring averaging of k-space data [33],
or increased temporal resolution for dynamic imaging. A detailed
investigation of sampling strategies will be a topic of future
studies.
4.2. Influence of the norm

A paper by Chartrand [26] shows that a nonconvex norm could
be more beneficial in the noise-free case than using the convex
norm p = 1.00. The present study thus required a detailed investi-
gation of the norm influence. As previously mentioned, a noncon-
vex norm p < 1 leads to exact reconstructions from even fewer
sampled k-space points than the convex norm p = 1.00 [26]. Since,
however, noise is always present in physical measurements such
as MR, this theory was investigated for noisy data (Figs. 1 and 2).

The noise-free case is well approximated for low noise levels.
Additionally, the profiles of the numerical mouse phantom show
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that each norm accurately recovered the components with signifi-
cantly higher intensity than the noise level (upper row, Fig. 2b).
However, the fine structure magnified in the lower row of Fig. 2b
shows that for the given number of iterations, the low signal de-
tails were not recovered from the convex norm p = 1.00. This con-
firmed the faster convergence of a nonconvex CS algorithm for data
with moderate to no noise. It also explains why using a nonconvex
instead of a convex norm is beneficial.

Spike artifacts, however, appear in the presence of noise due to
the strict data consistency constraint of the applied algorithm.
These artifacts are more pronounced the smaller the norm. This
is because a decreasing norm also decreases the remaining back-
ground intensity of the nonconvex reconstructions. Thus, the
spikes are much more pronounced for lower p values and easier
to recognize (Fig. 2b, lower row, r = 0.001 and 0.01). This effect de-
grades the visual reconstruction quality for the p < 1 norms, mak-
ing the p = 1.00 images appear less corrupted (Fig. 2a, r = 0.01).
In most cases, since spikes rarely emerge in clusters and thus
resemble ‘‘salt-and-pepper” noise, they can be clearly distin-
guished from the relevant signal components.

In summary, for low to moderate noise levels, a nonconvex
norm can be beneficial in terms of accelerated CS algorithm con-
vergence. In the case of clearly visible spike artifacts, however, it
must be decided in each case whether or not these artifacts are tol-
erable. This is because they can corrupt the reconstructed data.
However, a preliminary study has been recently published offering
a possibility to reduce spike artifacts [34]. For the in vivo experi-
ments in this study, the nonconvex norm p = 0.75 was chosen as
a good compromise. Further explanation for this choice is given
in the noise section.
4.3. Influence of the acceleration factor

The simulations, reflected by the RMSE, suggest that the accel-
eration factor is of minor importance (Fig. 1). The RMSE, however,
can be a misleading metric to measure reconstruction quality in
cases of high noise levels. This is discussed in detail in the follow-
ing section. Since the exact sparsity of the underlying data is
Fig. 8. Illustration of the RMSE metric problem. (a) In the presence of high noise, CS r
increasingly more non-recovered structures occur in the difference images, the overall
increasing suppression of remaining background intensity. Thus, lower RMSE values are o
different acceleration factors are displayed in the presence of low noise. The difference i
the acceleration factor, the more non-recovered signal components are revealed in the
factors (Fig. 1a).
unknown in most experiments, the use of relatively low accelera-
tion factors up to 8 is recommended. Based on these findings, the
in vivo datasets were undersampled by a factor of 8.
4.4. Influence of noise and effects on the RMSE metric

As already implied, noise is the dominating factor influencing
reconstruction quality. The underlying assumption of sparsity,
which is crucial for CS, can be properly defined only when used
with noise-free data. However, as soon as an infinitesimally low
noise level is added, sparsity can only be given as an approximate.
Thus, CS reconstruction fails when applied on data with a high
noise level. As shown in recent mathematical [35] and MR-related
papers [18–22], however, CS reconstructions from noisy data are
possible. While the influence of noise on CS reconstruction quality
has already been investigated [36], the present study examines in
detail the influence of noise on CS reconstruction.

The results demonstrated that by increasing the noise level, the
minimum RMSE value shifts from nonconvex norms to the convex
norm p = 1.00 (Fig. 1b). This implies that the norm providing the
best reconstruction quality is dependent on the noise level. A good
compromise is p = 0.75 since it performs well for all investigated
noise levels. Using p = 0.75, sufficiently accurate CS reconstructions
of undersampled in vivo 19F CSI datasets were obtained with an
SNR as low as 10 in the fully sampled reference (Fig. 7). Besides
the investigated animal model, other 19F applications, such as
inflammation models [37,38], provide sufficient SNR for CS recon-
struction. In these works, SNR values larger than 20 were achieved,
which are, based on the results of the current study, sufficient for
proper CS reconstruction.

Since a noise-free reference was available, the simulations were
quantified using the RMSE. The RMSE metric is widely used and
merges deviations between reconstructions and a noise-free refer-
ence image into a single value. However, even when the deviation
between a completely sampled noisy dataset and a noise-free ref-
erence are quantified using this metric, the RMSE never equals zero
due to noise. This becomes especially problematic in the presence
of high noise levels. For noise levels r = 0.005 and 0.01 (Fig. 1b), the
econstructions (p = 0.75) for different acceleration factors are displayed. Although
difference intensities decrease the higher the acceleration factor. This is due to the
btained for higher acceleration factors (Fig. 1b). (b) CS reconstructions (p = 0.75) for

ntensities are comparable regardless of the acceleration factor. However, the higher
difference images. Thus, higher RMSE values are obtained for higher acceleration
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RMSE increases with decreasing acceleration factors. This is a mis-
leading tendency that is a result of the increasing suppression of
background intensity with higher acceleration factors (Fig. 8a). If
the noise level is low, this effect is less pronounced (Fig. 8b). Fur-
thermore, in contrast to human visual perception, no structural
information is taken into account using the RMSE metric. Two
images with the same RMSE value may have different types of im-
age errors (e.g., artifacts or noise). Since the RMSE might to lead to
false conclusions in cases of high noise, an additional visual inspec-
tion of the reconstructed images must be performed. Which image
metric is best suited to quantify CS reconstruction quality should
be further investigated.

4.5. Influence of averaging

As mentioned above, CS is an exact framework only for noise-
free data. This implies that the SNR in the undersampled data
should be as high as possible in order to approximate the noise-free
case as close as possible. In the phantom simulations, the effect of
higher SNR can be observed by comparing the quality of reconstruc-
tions obtained for different noise levels but the same acceleration
factor and norm (Figs. 1 and 2). For the ex vivo and in vivo data,
the SNR was improved by averaging the acquired k-space points.
Although it was possible to successfully reconstruct the single aver-
aged ex vivo and in vivo datasets from af = 8, the effect of different
SNR levels on the reconstruction quality was also studied.

The better-defined signal components in Figs. 3 and 5 resulted
from the improved SNR of the acquired k-space points. In the CS
reconstruction of the undersampled (af = 8) five times averaged
dataset (Fig. 3), the low background intensity is due to the higher
acceleration factor and the five averages. High undersampling
leaves more degrees of freedom for the CS reconstruction, which
results in increased suppression of background intensity (Fig. 8a).
Higher SNR allows greater distinction between signal and back-
ground, resulting in higher contrast in the CS reconstruction.

In the presence of low SNR (single average), however, low accel-
eration factors (CS reconstruction with af = 8/5 in Fig. 3) can be
advantageous. Since most k-space data are collected using low
acceleration factors, few degrees of freedom are left to the CS
reconstruction. Therefore, no visible spike artifacts appear. In this
particular case, zero-filling a low resolved dataset from 5/8 of all
k-space points (Fig. 3, zero-filled) resulted in nearly the same im-
age quality as the fully sampled reference. This is because the res-
olution of the zero-filled dataset in 3D imaging is still approx. 85%
(third root of 5/8) of the fully sampled reference.

Fig. 7 demonstrates the CS reconstruction improvement in the
in vivo experiments due to averaging. Additionally, these experi-
ments underline the relation of the spike artifacts to the noise le-
vel. As the number of averages increases, the SNR in the
undersampled data is improved. As can be seen in the phantom
simulations, higher SNR in undersampled data leads to signifi-
cantly lower RMSE values (e.g., Figs. 1 and 2). Hence, averaging re-
duces the intensity of the spikes and improves the visual
reconstruction quality. Based on the presented results, no conclu-
sion can be drawn as to which of the presented sampling strategies
(zero-filling from 5/8 of the total k-space, single average; af = 8,
five averages; af = 8/5, single average) is best. Furthermore, the uti-
lized CS reconstruction is a nonlinear algorithm and, as described
in the next section, it is unknown how to determine the SNR in a
CS reconstruction. These issues should be further investigated
and were beyond the scope of this study.

4.6. Remarks on SNR in CS reconstructions

Since the utilized CS algorithm is nonlinear, the Gaussian
noise distribution in the data will not be reproduced in the CS
reconstruction. The result is a non-Gaussian noise distribution where
the underlying statistics are unknown. In Fig. 2, the noise level in
the reference is always higher than the remaining background
intensity of the CS reconstructions. Furthermore, as seen in the
simulations, the appearance of spike artifacts is more pronounced
the smaller the norm and the higher the noise level (Fig. 2). These
results indicate spike artifacts are noise related. Moreover, as pre-
viously discussed, the background intensity depends on the norm
and on the noise level. Thus, the remaining background intensity
and spike artifacts in the CS reconstructions cannot be viewed as
an actual noise level even though they appear to be noise-like.

4.7. Remarks on the CS algorithm

CS allows reconstruction of undersampled datasets when it is not
possible to obtain fully sampled data. CS algorithms often require
regularization parameters [18,27]. However, these parameters can
be hard to obtain without prior knowledge and might significantly
influence the reconstructed image [39]. The CS algorithm used in
this work enforces strict data consistency and optimizes only one
minimization term [26,40]. Therefore, no regularization is neces-
sary in order to reconstruct undersampled datasets.

4.8. Remarks on the sampling pattern

The exact distribution of 19F marker substance in vivo was un-
known a priori. This is the case in the majority of applications.
Therefore, a pseudo-random pattern was chosen as the k-space
sampling strategy. This strategy can be used independent of mea-
surement parameters (e.g., matrix size) as long as the expected
data are sparse. The densely sampled k-space center size must also
be adapted to the particular matrix size. As demonstrated in this
paper, sampling a central k-space region that is approximately
1% of the total k-space is sufficient. However, if the signal distribu-
tion is known a priori, the sampling strategy can be adopted to the
specific situation. For example, k-space points could be acquired
with the highest expected SNR [41,42].

4.9. General comments

Zero-filling is a common strategy to interpolate low resolved
datasets to larger matrix sizes. For low acceleration factors, this
method can provide acceptable results since 3D resolution de-
creases only with the third root of the acceleration factor. How-
ever, in the case of af = 8, the resolution is already reduced by a
factor of 2. As seen in Fig. 4, blurring and ringing artifacts occur
in the zero-filled dataset and hamper the image quality. In such
cases, CS is preferable and, for lower afs, CS provides image quality
at least comparable to zero-filling.

The applied CS algorithm enforces strict data consistency as
suggested in [26]. This means that the acquired data repeatedly
reinserted in the CS reconstructed k-spaces are assumed to be per-
fect. This is logical for ideal, noise-free data. However, in the pres-
ence of noise, noise-corrupted data are assumed to be optimal. This
is a source of artifacts in the reconstructions. These errors manifest
themselves as spike artifacts in the final images.

The ability to distinguish between compounds with different
spectral signatures is the key feature of CSI. As shown in Fig. 6, dif-
ferent PFC markers can be clearly distinguished after CS reconstruc-
tion of 19F CSI. Furthermore, spectral points are well reconstructed
in cases of high signal. The line shapes differ noticeably for low sig-
nal components since the CS reconstruction fails (Fig. 6b). This issue
is closely related to the quantification of 19F markers from CS recon-
structed data. If the line shapes are correctly reconstructed, quanti-
fication is possible (Fig. 6). However, because CS reconstructed line
shapes differ noticeably from the real spectrum for low signal
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components, quantification in such instances is likely to fail. Never-
theless, quantification with low signal is always challenging.

The free choice of a sampling pattern for the undersampled k-
space is one advantage of using fully phase-encoded CSI. In this
study, a densely sampled k-space center surrounded by a pseu-
do-random outer k-space was chosen. As mentioned in the meth-
ods section, this pattern is known to be advantageous for CS.
However, other trajectories that introduce incoherent artifacts in
cases of undersampling can be easily employed in fully phase-en-
coded CSI. Examples include variable density [27] and pseudo-ra-
dial [43] methods.

5. Conclusion

The presented results demonstrate that 19F CSI can benefit from
CS. The proposed method yielded highly accurate and reproducible
reconstructions. In simulations, the interdependency of the accel-
eration factor, the noise level and the reconstruction norm was
studied. The simulation results were then confirmed using
ex vivo experiments, through which the proposed method was
tested on a realistic signal distribution. In a final step, undersam-
pled in vivo 3D CSI mouse datasets were successfully recon-
structed. This study showed that CS can lead to significantly
reduced measurement times and more flexibility in the data acqui-
sition process. Additional topics such as the quantification of SNR
and marker content are of special interest and must be further
investigated. The question of how to best exploit the flexibility pro-
vided by undersampling should also be addressed in future studies.

In conclusion, CS has the potential to significantly improve and
extend the applicability of in vivo 19F MR imaging. Additionally, the
proposed CS reconstruction method is not limited to the presented
19F nucleus or the utilized spectroscopic imaging sequence.
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Appendix A

The reconstruction algorithm used to optimize Eq. (1) uses the
method of steepest descent to find the minimum of the desired
cost function. The algorithm is described in (26) and the nomencla-
ture here follows this reference. To minimize Eq. (1), the derivative
of this CS cost function must be computed. The absolute value
function abs(u) is discontinuous at u = 0, where u is an arbitrary
function with ui 2 C. To prevent this problem in the derivative,
the abs-function is approximated by:

juj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ e2

p
ðA1Þ

where e can be arbitrarily small (e 2 R).
With this approximation, Eq. (2) can be rewritten as:

kukp ¼
X

i

juijp
 !1

p

�
X

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

i þ e2
q� �p

 !1
p

ðA2Þ

where the image pixels are stacked into the vector u. By writing the
image as a vector, the algorithm can be used for 2D, 3D, or even
higher dimensional datasets.
Hence, the derivative of Eq. (A2) for each element i can be writ-
ten as:

di ¼ u2
i þ e2� �p�2

2 � ui ðA3Þ

Only the summand has been derived since the power 1/p in Eq.
(A2) can be seen as a scaling operation on the sum.

At the beginning of the reconstruction, e is set to a relatively
large value. By normalizing the maximum image intensity to 1, it
was possible to achieve good reconstruction results starting with
eStart = 1. This e is then repeatedly reduced until the value eEnd is
reached. In this work, eEnd was always set to 10�4.

After calculating the derivative of the actual reconstructed im-
age, a stepsize, t, for the steepest descent must be chosen so that
t minimizes:

min
X

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui � t � dið Þ2 þ e2

q� �p
 !1

p

: ðA4Þ

In MATLAB, this minimization is performed using the function
fminbnd. Please note that Eq. (A3) neglects the factor p, which is
incorporated in the determined stepsize. Furthermore, it should
be noted that t is a scalar (t 2 R) and not a vector of the same size
as d. The new updated image can then be obtained by:

unew ¼ uold � t � d ðA5Þ

As a last step, the strict data consistency principle is enforced.
Therefore, the measured k-space data points are reinserted at the
respective positions in the reconstructed k-space. All other k-space
points that have been reconstructed are kept. This operation can be
written as:

kðabsðkSpaceAqÞ > 0Þ ¼ kSpaceAq ðA6Þ

where k is the k-space of the actual reconstructed image. Eq. (A6)
means that where kSpaceAq > 0 (the points where a k-space point
is sampled), the values of kSpaceAq are reinserted into k.

All described steps are repeated until e < eEnd. In this work, e was
decreased every 30th iteration by a factor of 2, leading to 420 iter-
ations per reconstructed dataset.

The algorithm in pseudo-code is as follows:

Initialise:
u0 = IFFT(kSpaceAq)
normalize u0 to 1
eStart = 1
eEnd = 10�4

e = e�0.5 every 30th iteration
n = 0 (iteration counter)

while e > eEnd

� n = n + 1

� dn ¼ u2
n�1 þ e2

� �p�2
2 � un

� direct line search:

t ¼ findmin
P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
un�1;i � t � dn�1; j
� �2 þ e2

q� �p� �1
p

� un ¼ un�1 � t � dn

� k = FFT(un)
� reinsert measured k-space points:

k(abs(kSpaceAq) > 0) = kSpaceAq
� un = IFFT(k)
� if n is multiple of 30

e = e�0.5
end

end
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